e-Planning at MIT: Urban Information Systems for Responsive Cities

Prof. Joseph Ferreira, Jr.Head, Urban Information SystemsMIT Urban Studies & Planning Department

Plif Uis

MIT Department of Urban Studies and Planning

- Part of School of Architecture and Planning
 - ~65 MCP and ~8 PhD each year
 - 75th Anniversary this year
 - Physical and social consequences of development
- Areas of Interest
 - City design, housing and communities, environment, and international development
 - Urban information systems, transportation, and regional planning
 - Distributional impacts of development
- Multi-disciplinary faculty
 - Architecture, urban planning, social science, engineering

E-Planning

- Impacts of new Information and Communication Technologies (ICT) on planning and development of metro areas
- Increasingly important due to problems with global warming, sustainability, urbanization
- 25-year history at MIT
 - Planning Support Systems
 - Geographic Information Systems (GIS) and spatial data infrastructure
 - Technology-aided public participation (PPGIS)
 - e-Planning seminars in 2003 (organized by Pedro)

ePlanning Scope

- ePlanning is more than eGovernment
 - Beyond office automation
 - ICT has broad social impacts & ripple effects
 - ePlanning Goal is *not* 'automation'
 - Example: permitting (what development to allow)
 - Illuminate consequences of choices
 - Discover interests, values, alternatives
 - Facilitate evaluation and (self) governance
 - Protect public interest and public goods
- Restructuring urban planning to utilize ICT
 - Making cities more *responsive* via ICT

Example: ePlanning Opportunities and Challenges for Urban Transportation

• Lots of ICT Impacts on urban transportation

- Direct changes in urban transport efficiency
 - Productivity: fare collection, vehicle location, ...
 - Incentives: Congestion pricing, realtime adjustment, ...
- Indirect changes in behavior & land use
 - New economics of place
 - New choices for facility location, public space, …

• We need

- More than transportation data
 - land use, buildings, safety, demographics, ...
- More than logistical analysis
 - Urban design: digital cities, public spaces
 - Data management privacy, personal freedom, net neutrality

ePlanning Opportunities and Challenges for Urban Transportation – Part II

Illustrate key points:

- New Information infrastructure requirements
 - Base of 'City Knowledge' as 'public good'
 - Distributed, flexible, loosely-coupled architecture
 - To allow public/private value-added
 - Using chained web services (not isolated models)
- Traditional urban models need rebuilding
 - To tap 'City Knowledge' base
 - To be part of continual planning process
 - To support useful citizen participation

Job-Housing Balance and

Commuting Patterns (with Yang Jiawen)

- Study journey-to-work data in Atlanta and Boston for 1980, 1990, and 2000
 - US Census survey of 5% of households
 - identify residence, workplace, and commuting mode/time
 - Aggregate to census tract and publish (free)
 - 2 million workers & 900 census tracts in Atlanta & Boston
 → 900x900= 810,000 commuting possibilities
- Compare commuting patterns as residences and jobs decentralized

Job-Housing Balance and Commuting Patterns: Examine UIS Implications of Study

Facilitate exploratory data analysis by

- Putting journey-to-work data on Web
 - Worker counts for 900x900 resident/job pairs
- With tools to visualize spatial patterns
 - In relational database (Postgres)
 - Use PHP and MapServer to provide online mapping of job density, commute sheds...

Natick commute shed 1990-2000 [workplaces of Natick residents]

Trend: Spreading outward along *non-toll* highways

Effects of Transfers and Pedestrian Environment on Transit Riders (with Guo Zhan)

- Use another travel survey 3000 transit trips into downtown Boston
- Identify transit riders with multiple paths to work
 - with/without transfer, long walk, ...
- Measure characteristics of each path
 - Transfer convenience (stairs, long walk, ...)
 - Pedestrian friendliness (sidewalk width, cafe and shop density, ...)

Modeling Transit Rider Behavior

- Fit discrete choice model
 - path choice = function of path characteristics
- Use results to understand effects of station design and land use patterns on transit riders
 - Transfer inconvenience is high equivalent to 10 minutes of walking time savings
 - But 70% is controllable (transfer distance, escalator, ...)
 - Pedestrian attractiveness matters
 - riders exit sooner and walk further if land use is attractive

UIS Lessons from Modeling Transit Rider Behavior

Predicting transit rider behavior requires

- Spatially detailed journey-to-work data (again)
- Parcel-level land use data
- Extensive spatial analysis using GIS and algorithms
 - Identify path options
 - Measure geography and land use along paths
 - Compute path characteristic indicators for discrete choice model

Quality of UIS limits transit analysis capacity

Urban Transportation Planning Implications: UIS Lessons from Examples

- ICT complicates urban planning and modeling
 - Because ICT makes future ≠ past
- ICT provides new data and tools
 - However, traditional GIS is not enough
 - Need spatial analysis tools and data management
- Metropolitan Spatial Data Infrastructure
 - Beyond centralized 'enterprise GIS'
 - Share distributed geospatial services (not data sets)
 - Realtime city monitoring and planning will require even more...

Urban Transportation Planning Implications (Continued)

Metropolitan Information Infrastructure

- More than 'intelligent transportation systems' (ITS)
- Needs base of 'City Knowledge' as 'public good'
- Distributed, flexible, loosely-coupled architecture
 - To allow public/private value-added
 - Using chained web services (not isolated models)
 - And interoperable, open geospatial standards

Traditional urban models need rebuilding

- To build web services on 'City Knowledge' base
- To enable continuing planning processes
- To support useful citizen participation

ePlanning Scope

- ePlanning is more than eGovernment
 - Beyond office automation
 - ICT has broad social impacts & ripple effects
 - ePlanning Goal is *not* 'automation'
 - Example: permitting (what development to allow)
 - Illuminate consequences of choices
 - Discover interests, values, alternatives
 - Facilitate evaluation and (self) governance
 - Protect public interest and public goods
- Restructuring urban planning to utilize ICT
 - Making cities more *responsive* via ICT

Thank you

Joe Ferreira jf@mit.edu

